#include "screenspace.hlsl" // ao sampling #define SSAO_NUM_PAIRS 8 #define SSAO_RADIUS 2 #define SSAO_MIN_PIXELS 10 #define SSAO_MAX_PIXELS 100 #define SSAO_MIP_OFFSET 2 // ao tuning #define SSAO_OVERSHADOW 0.75 #define SSAO_ANGLELIMIT 0.1 #define SSAO_BOOST 1 // blur tuning #define SSAO_BLUR_SAMPLES 3 #define SSAO_BLUR_STRENGTH 1.5 #define SSAO_BLUR_DEPTH_THRESHOLD 0.4 // composite tuning #define SSAO_DEPTH_THRESHOLD_CENTER 0.02 #define SSAO_DEPTH_THRESHOLD_ESTIMATE 0.4 TEX_DECLARE2D(depthBuffer, 0); TEX_DECLARE2D(randMap, 1); TEX_DECLARE2D(map, 2); TEX_DECLARE2D(geomMap, 3); uniform float4 Params; float4 SSAODepthDownPS(float4 pos: POSITION, float2 uv: TEXCOORD0) : COLOR0 { float d0 = tex2D(geomMap, uv + TextureSize.zw * float2(-0.25, -0.25)).r; float d1 = tex2D(geomMap, uv + TextureSize.zw * float2(+0.25, -0.25)).r; float d2 = tex2D(geomMap, uv + TextureSize.zw * float2(-0.25, +0.25)).r; float d3 = tex2D(geomMap, uv + TextureSize.zw * float2(+0.25, +0.25)).r; return min(min(d0, d3), min(d1, d2)); } float getSampleLength(float i) { return (i+1) / (SSAO_NUM_PAIRS+2); } float2 getSampleRotation(float i) { float pi = 3.1415926; return float2(cos(i / SSAO_NUM_PAIRS * 2 * pi), sin (i / SSAO_NUM_PAIRS * 2 * pi)); } float4 SSAOPS(float4 pos: POSITION, float2 uv: TEXCOORD0): COLOR0 { float baseDepth = tex2Dlod(depthBuffer, float4(uv, 0, 0)).r; float4 noiseTex = tex2D(randMap, frac(uv*TextureSize.xy /4))*2-1; float2x2 rotation = { { noiseTex.y, noiseTex.x }, { -noiseTex.x, noiseTex.y } }; const float sphereRadiusZB = SSAO_RADIUS / GBUFFER_MAX_DEPTH; float2 radiusTex = clamp(sphereRadiusZB / baseDepth * Params.xy, SSAO_MIN_PIXELS * TextureSize.zw, SSAO_MAX_PIXELS * TextureSize.zw); float lod = log2(getSampleLength(0) * length(radiusTex * TextureSize.xy)) - SSAO_MIP_OFFSET; float result = 1; // center pixel float weight = 2; for (int i = 0; i < SSAO_NUM_PAIRS; i++) { const float offsetLength = getSampleLength(i); const float2 offsetVector = getSampleRotation(i) * offsetLength; const float segmentDiff = sphereRadiusZB * sqrt(1 - offsetLength*offsetLength); const float angleLimit = offsetLength * SSAO_ANGLELIMIT; float2 offset = mul(rotation, offsetVector) * radiusTex; float2 offsetDepth; offsetDepth.x = tex2Dlod(depthBuffer, float4(uv + offset, 0, lod)).r; offsetDepth.y = tex2Dlod(depthBuffer, float4(uv - offset, 0, lod)).r; float2 diff = offsetDepth - baseDepth.xx; // 0 is the near surface of the sphere, 1 is the far surface, 0.5 is the middle float2 normalizedDiff = diff * (1 / segmentDiff * 0.5) + 0.5; // only add sample contribution if both samples are visible - if one is invisible we estimate the twin as 1-s so sum is 1 float sampleadd = saturate(min(normalizedDiff.x, normalizedDiff.y) + SSAO_OVERSHADOW); result += (saturate(normalizedDiff.x + angleLimit) + saturate(normalizedDiff.y + angleLimit)) * sampleadd; weight += 2 * sampleadd; } // rescale result from 0..0.5 to 0..1 and apply a power function float finalocc = (baseDepth > 0.99) ? 1 : pow(saturate(result / weight * 2), SSAO_BOOST); return float4(finalocc, baseDepth, 0, 1); } float2 ssaoBlur(float2 uv, float2 offset, TEXTURE_IN_2D(map)) { float sigmaN = 1 / (2 * SSAO_BLUR_STRENGTH * SSAO_BLUR_STRENGTH); float baseDepth = tex2D(map, uv).g; const float sphereRadiusZB = SSAO_BLUR_DEPTH_THRESHOLD / GBUFFER_MAX_DEPTH; float depthTolerance = clamp((baseDepth * 80) * sphereRadiusZB, 0.1 * sphereRadiusZB, 10 * sphereRadiusZB); float result = 0; float weight = 0; for (int i = -SSAO_BLUR_SAMPLES; i <= SSAO_BLUR_SAMPLES; ++i) { const float ix = i; const float iw = exp(-ix * ix * sigmaN); float4 data = tex2D(map, uv + offset * ix); float w = iw * (abs(data.g - baseDepth) < depthTolerance); result += data.r * w; weight += w; } return float2(result / weight, baseDepth); } float4 SSAOBlurXPS(float4 pos: POSITION, float2 uv : TEXCOORD0): COLOR0 { float2 o = float2(TextureSize.z, 0); float2 ssaoTerm = ssaoBlur(uv, o, TEXTURE(map)); return float4(ssaoTerm, 0, 1); } float4 SSAOBlurYPS(float4 pos: POSITION, float2 uv : TEXCOORD0): COLOR0 { float2 o = float2(0, TextureSize.w); float2 ssaoTerm = ssaoBlur(uv, o, TEXTURE(map)); return float4(ssaoTerm, 0, 1); } VertexOutput_4uv SSAOCompositVS(float4 p: POSITION) { float2 uv = convertUv(p); VertexOutput_4uv OUT; OUT.p = convertPosition(p, 1); OUT.uv = uv; float2 uvOffset = TextureSize.zw * 2; OUT.uv12.xy = uv + float2(uvOffset.x, 0); OUT.uv12.zw = uv - float2(uvOffset.x, 0); OUT.uv34.xy = uv + float2(0, uvOffset.y); OUT.uv34.zw = uv - float2(0, uvOffset.y); return OUT; } float4 SSAOCompositPS(VertexOutput_4uv IN): COLOR0 { float4 geom = tex2D(geomMap, IN.uv); float4 mapC = tex2D(map, IN.uv); float4 map0 = tex2D(map, IN.uv12.xy); float4 map1 = tex2D(map, IN.uv12.zw); float4 map2 = tex2D(map, IN.uv34.xy); float4 map3 = tex2D(map, IN.uv34.zw); float baseDepth = geom.r; float ssaoC = mapC.r; float depthC = mapC.g; float4 ssaoEst = float4(map0.r, map1.r, map2.r, map3.r); float4 depthEst = float4(map0.g, map1.g, map2.g, map3.g); // can we trust the neighbors? 1 - yes, 0 - no float4 checkEst = abs(depthEst - baseDepth) < SSAO_DEPTH_THRESHOLD_ESTIMATE / GBUFFER_MAX_DEPTH; float checkEstSum = dot(checkEst, 1); float ssaoTermEst = dot(ssaoEst, checkEst) / checkEstSum; // the final decision: pick the estimate sample if there are good neighbors and base depth is not trustworthy float ssaoTerm = abs(depthC - baseDepth) * checkEstSum > SSAO_DEPTH_THRESHOLD_CENTER / GBUFFER_MAX_DEPTH ? ssaoTermEst : ssaoC; // AO reduction for high specular and diffuse values. Computed in gbufferPack in common.h float slope = geom.g; return float4((1 - slope) * ssaoTerm.xxx + slope, 1); }